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Group of techniques that automatically extract patterns from (large amounts of)
data
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Computer vision with machine learning

Input:

Label: cat Label: Dog



What can | do with machine learning?

Gather new information at scale from pictures, texts, etc. (Crop health, GHG
emissions)

Create better forecasts (renewable energy, transportation demand)
Improve the efficiency of operations (heating and cooling, food waste)

Make maintenance cheaper and more effective (natural gas leaks, resilient
infrastructure)

Accelerate scientific experimentation (batteries, clean energy materials)

Speed up time-intensive simulations (climate science, city planning)

Rolnick, D., Donti, P.L., Kaack, L.H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A.S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A. Luccioni, A., et al., 2019.
Tackling Climate Change with Machine Learning. arXiv preprint arXiv:1906.05433. 4



Computer vision for improving food security

Motivation: Agriculture is very sensitive to
extreme weather events aggravated by
climate change

Application: Monitoring yield at scale via
satellite and aerial imagery by assessing
crop distribution and crop health to inform
early warning and emergency response
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ML: Computervision, e.g., to automatically
label crops over a wide area

Inform & Enable
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District energy

Motivation: District heating systems for use

of waste heat

Application: Forecasting heat demand for
better scheduling of efficient production

units

ML: Sequence prediction based on heat

generation and metering and
environmental data
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Corporate climate risk disclosure

Motivation: Financial implications of
physical and transition risks and
opportunities

Application: Analyzing climate risk
disclosure in annual reports by companies
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Urban planning

Motivation: Designing new walkable and
energy-efficient districts

Application: Pedestrian-level wind
simulation during design stage

ML: Modeling the urban microclimate in
seconds, rather than hours, by
approximating time-intensive simulations

Image: InFraReD by AIT



Where ML is applicable, it is
only one piece of the puzzle!
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Limitations of ML

ML models must be customized and mostly trained specifically for the task
ML models are based on huge amounts of data and compute

“Garbage in, garbage out”

« Important for data to represent what you need
« Important for data to be “clean”

Inherits biases in data/design/use - not “objective”

Assumes patterns are persistent
 Difficulty with e.g. long-term forecasts

Finds correlation, not causation
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Benefits and costs of ML

Benefits from enabling new or
improved way of working
Generating insights where
human expertise does not exist
or is hard to make explicit
Performing tasks in a way that’s
cheaper or more scalable than
what humans can do

Benefits from operational
efficiency

Costs for data and IT infrastructure
Costs for highly skilled personnel
Risk that ML solution does not
outperform simpler approaches
Not a one-off: Costs for updates
and maintenance

Costs from institutional or process
changes
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Governance of ML for urban climate change mitigation

ML for municipal governments:

Motivations for and barriers to
deployment

(Perceived) benefits and risks

Systematic map (in review):

Rapidly evolving research area

Largely impactful areas
according to the IPCC

Most studies on Eastern Asia,
Europe and North America
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Contact

Al and Climate Technology Policy Group
Lynn Kaack
Assistant Professor at Hertie School of Governance

Co-founder and Chair of Climate Change Al

Homepage: https://lynnkaack.com

E-mail: kaack@hertie-school.org

www.climatechange.ai

, @LynnHKaack

@ClimateChangeAl

Climate Change Al
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Applications and impacts

Role of ML GHG emissions impact

Data mining and remote sensing Policy design, monitoring, and enforcement (for example, GHG tracking, infrastructure maps)

Accelerated experimentation _ _ ,
RD&D for low-carbon technologies (for example, photovoltaics, batteries)

Fast approximate simulation
Planning and design of relevant systems (for example, urban infrastructure, carbon markets)
Forecasting
System operation and efficiency (for example, heating and cooling, electricity grids)

System optimization and control

o . Accelerating emissions-intensive activities (for example, oil and gas exploration, cattle farming)
Predictive maintenance

Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. Nature Climate Change, 1-10. 14



Carbon footprint of machine learning
)
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Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. Nature Climate Change, 1-10.
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