

the

green

werk

Enhancing Impact – Learning to Estimate Your Project's Emission Reductions

Stefan Wehner (the greenwerk.) & Sven Feige (Perspectives)

EUKI NETWORKING CONFERENCE 2024

BERLIN | 15 MAY 2024

Intro speaker

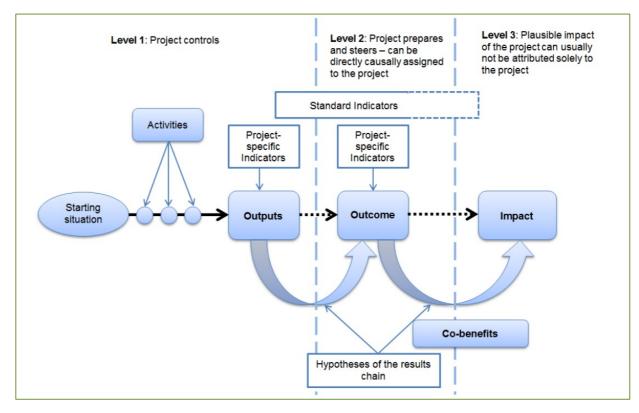
sw@thegreenwerk.net

SVEN FEIGE Senior Consultant Perspectives Climate Group

feige@perspectives.cc

Agenda

Introduction


What are EUKI Standard Indicators (SIs)?

- Predefined quantitative indicators
- Used to measure the overall objectives of EUKI

Federal Ministry for Economic Affairs

and Climate Action

- For the project proposal, projects must provide an estimated number for the respective standard indicator
- The actual numbers will be reported during the project by means of biannual narrative reports

Source: EUKI-guidelines-on-project-planning-and-monitoring.pdf

Federal Ministry for Economic Affairs

and Climate Action

EUKI SI GHG emissions is optional

- SI "V: GHG emissions reduced, or carbon stocks enhanced through project" is optional (as of <u>EUKI Guidelines</u> <u>2022</u>)
- Extract from EUKI Project Proposal Template 2022:
 - Projects that are suitable for measuring reduced GHG emissions and/ or expanding carbon storage can calculate and report them.
 - Please only calculate target values that are **directly attributable to the action** (e.g., result from outcome and output level and **within the timeframe** of the project).
 - **Do not add** any saved **emissions that are due to project management** (e.g., train vs. air travel) or that are expected in **the long-term**.

Why should you report on climate impact?

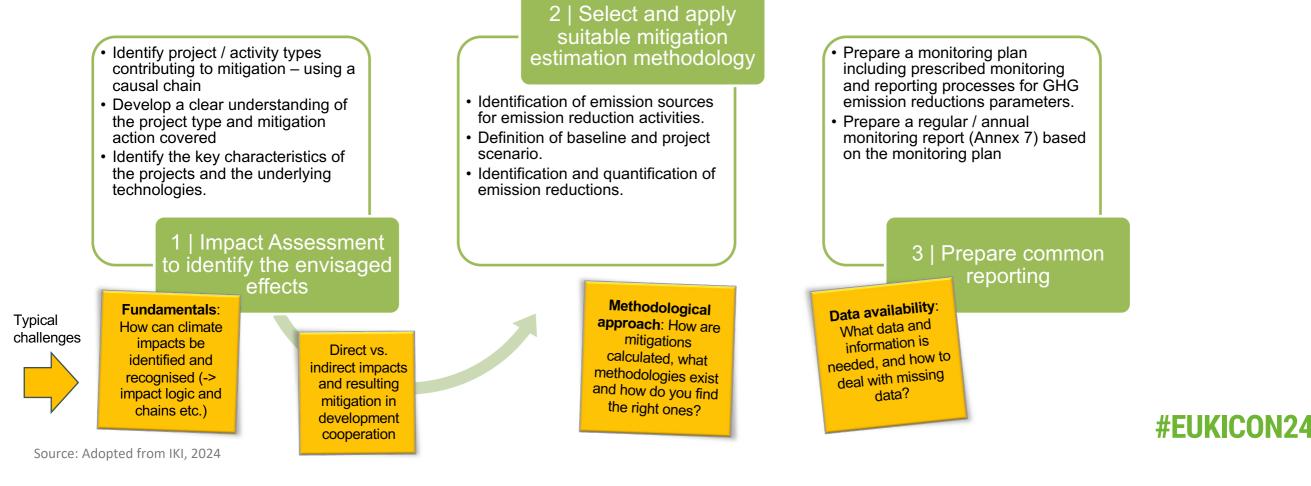
- Accountability and Transparency
 - Reporting ensures that the project's goals align with broader environmental objectives
- Performance Measurement

Federal Ministry

for Economic Affairs

and Climate Action

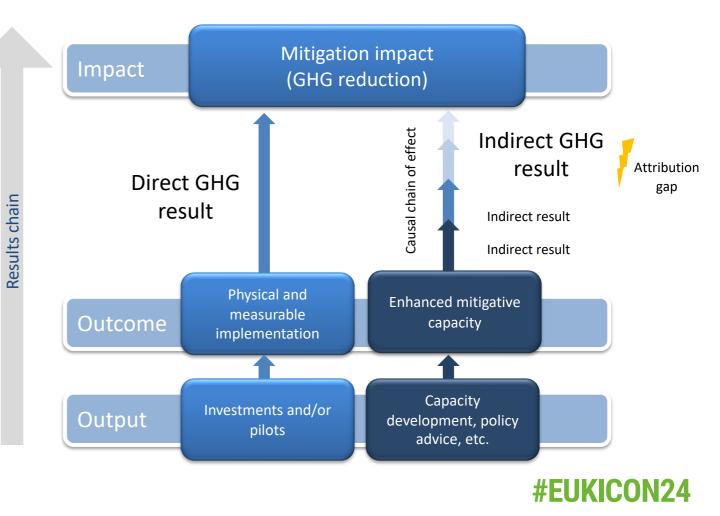
- Reporting providing data to assess whether environmental targets are being met and helps identify areas which need improvement
- Stakeholder Engagement
 - Impact reports showing the concrete climate benefits of a project's involvement can engage stakeholders
- Regulatory Compliance
 - Staying ahead of regulatory requirements ensures compliance and minimizes legal risks



Typical steps for estimation the mitigation potentials...

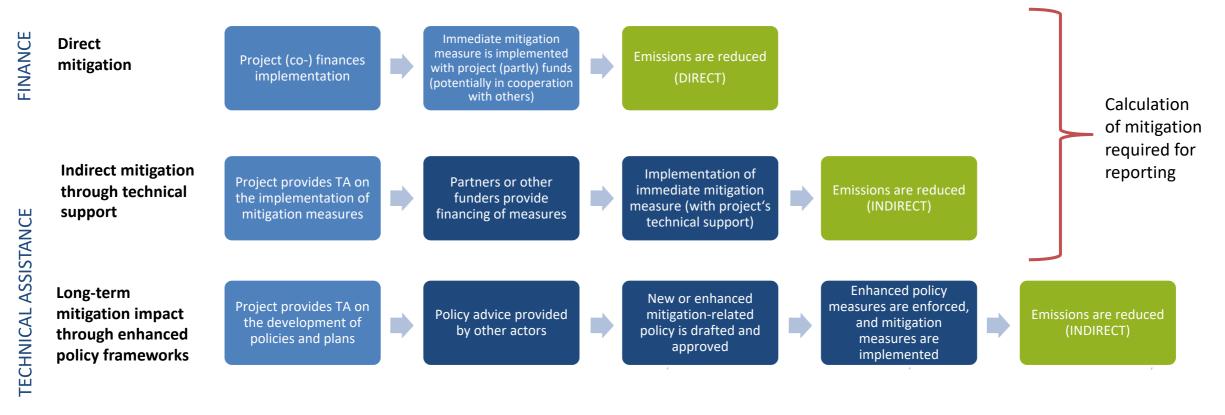
... and related challenges and pitfalls

1 | Understanding Climate Impacts and Mitigation in Development Cooperation


What is the difference between direct and indirect GHG impact?

Direct: The radius of action within which the project activities are steered and implemented and lead to direct results.

→ Emissions or emission reductions directly under the control of a project or facility.


Indirect: Steps of change located **outside the radius of action less susceptible to influence**, leading to indirect results.

→ Emissions or emission reductions outside of the influence/control of the project or activities but indirectly related.

How does IKI differentiate between GHG impacts?

Project

Other partners or actors

#EUKICON24

Federal Ministry for Economic Affairs

and Climate Action

GHG reducing activities in the energy sector

Energy generation

European

Climate Initiative

Use of **renewable energies for power generation**

- Solar energy for centralized grids
- Solar energy for isolated grids and autonomous systems
- Wind energy
- Ocean energy
- Geothermal energy
- Biofuel fired power plants
- Hydroelectric power plants

Use of renewable energies for heating and cooling

- Solar energy thermal applications
- Biomass
- Biogas
- Heat pumps
- Geothermal energy

Energy efficiency

Increasing energy efficiency in electricity generation, such as

- Combined heat and power plants
- District heating and cooling systems

Improving **energy distribution**, e.g., through the use of

- Modern electricity transmission and distribution (centralized grids)
- Modern electricity transmission and distribution (isolated minigrids)
- Infrastructures for electric mobility

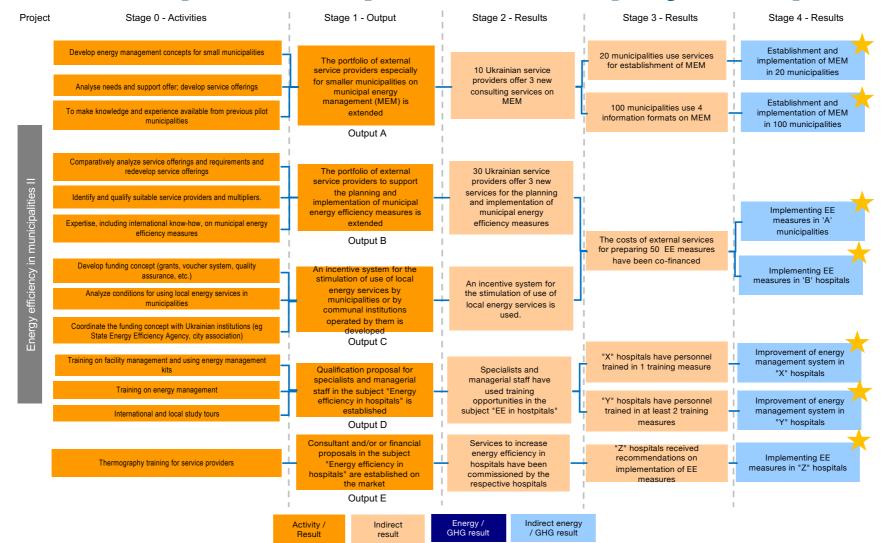
Energy efficiency measures to reduce the consumption of

consumed electricity and energy

- Use of energy-efficient equipment
- Energy efficiency in the manufacturing / industry sector

Example energy sector

Federal Ministry for Economic Affairs and Climate Action


Federal Ministry

for Economic Affairs

and Climate Action

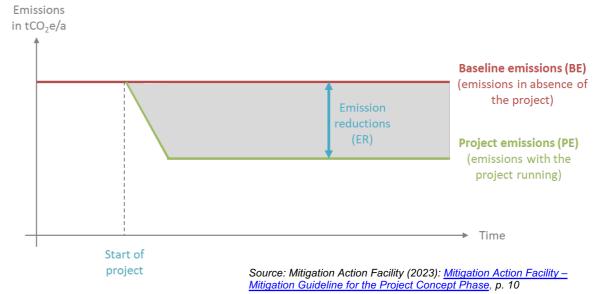
Source: GIZ. 2021

Causal Chain Map shall help to visualize project impact

Example energy sector

#FUKICON24

2 | Methodological Approaches to Mitigation Quantification

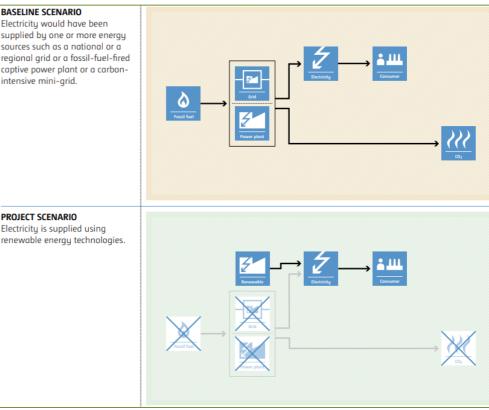

How to calculate mitigation effects?

The achieved emission reductions are typically calculated as the difference between baseline emissions and emissions after project implementation, considering any potential leakage.

$$ER_y = BE_y - PE_y - LE_y$$

Where:

- ER_y = Emission reductions in year y (tCO₂)
- BE_y = Baseline emissions in year y (tCO₂)
- PE_y = Project emissions in year y (tCO₂)
- LE_y = Leakage emissions in year y (tCO₂)


Typical baseline and project scenario

Baseline scenario

- reflects the emissions that would occur without the project
- represents the reference situation, e.g.,
 - the continuation of current activities (e.g., Business-as-Usual)
 - emissions from a technology that represents an economically attractive course of action
 - a benchmark approach (considering emissions from similar project activities undertaken in the previous five years in similar circumstances)

Project scenario

- represents the emissions associated with the (proposed) project's implementation
- reflects the expected outcomes of the project

Source: UNFCCC (2022a): CDM Methodology Booklet, p. 176.

Example

energy sector

Federal Ministry for Economic Affairs

and Climate Action

How to identify a suitable methodology which gives guidance on quantification of emissions?

To identify suitable methodological approaches,

- check other projects that estimated emission reductions from same / similar activities, e.g.,
 - <u>CDM Project Search</u>, <u>VERRA / VCS Project Registry</u>, Mitigation Action Facility / NAMA Support Projects, IKI Projects etc.
 - consult existing methodologies: CDM Methodologies, VCS, GS etc., e.g., in the <u>CDM Methodologies Booklet</u> (2022)
- consult and use simplified tools for the estimation, if existing, e.g., check
 - GHG Protocol Calculation Tools

3 | Common Reporting and Data Availability

Key parameters required to estimate emission reductions

Energy generation

European

Climate Initiative

- Type of energy source (solar, wind, hydro, biomass, geothermal)
- Capacity (in MW) and output (in MWh)
- Capacity factor (in %)
- Emission factor of displaced energy (e.g., national grid emission factor or for diesel generating system in tCO2/MWh)
- Technology lifetime (in years)

Energy efficiency

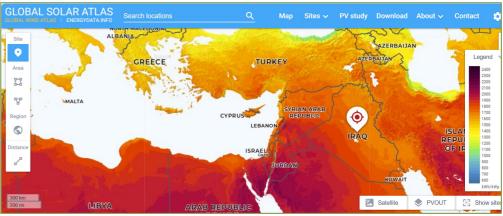
- Baseline energy consumption (in MWh)
- Energy savings (in % or MWh)
- Emission factor of energy saved (in tCO2/MWh)
- Technology lifetime (in years)

Federal Ministry for Economic Affairs

and Climate Action

Example energy sector

Where to find relevant default values and reference sources?


• IPCC for GWP

Federal Ministry

for Economic Affairs

and Climate Action

- IFI for default grid factors
- <u>Global Solar Atlas</u> / <u>Global Wind Atlas</u> for energy yields
- CDM methodological tool <u>Default values for common parameters</u> (including CO2 EF for diesel generating system used for off-grid power generation purposes, CO2 EF for kerosene used for lightening applications, wood-to-charcoal conversion factor, Efficiency of pre-project cooking device)

Source: Global Solar Atlas

Case Clinic

Objective: Benefitting from collective experience and expertise

The purpose of a case clinic is to leverage the collective expertise and creativity of all participants to address real-world challenges related to estimating emission reductions in project management.

Process Steps

1. Distributing roles

- Case giver (already defined)
- Facilitator/ Timekeeper
- Rapporteur
- 2. Intention statement by case giver (5 minutes)
 - Description of project and activities
- 3. Group discussion (30 minutes)
 - What is the project's mitigation potential? What are direct and indirect effects, and resulting emission reductions?
 - What would be suitable approaches (methodologies) to quantify the project's mitigation potential?
 - Which are the data challenges and how can they be addressed?
- 4. Final discussion and closing (5 minutes)

Case givers

- 1. RENewLand (Csaba Csontos)
- 2. SOFI Smart Organic Food Initiative (Peter Fabjan)
- 3. COMMENCE Community Energy in Central Europe (Laura Otypkova)
- 4. Reducing Emissions in Carpathian Mountain Huts (Nicolae Daniel Tulban)

Presentation of Case Clinic Results

Wrap Up

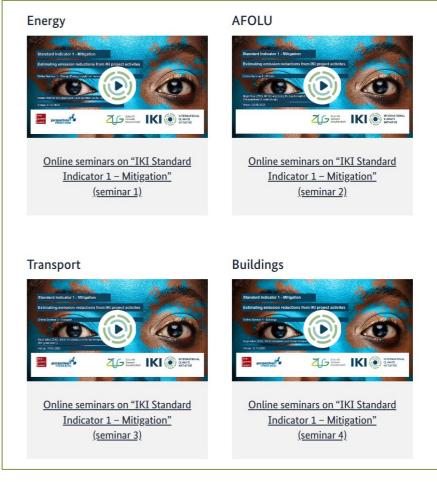
Federal Ministry

for Economic Affairs

and Climate Action

How to report your project's climate impact?

- 1. Develop a clear understanding of the project type and mitigation action(s) covered
 - Identify the key characteristics of the projects and the underlying technologies
 - Conduct an **impact assessment**, e.g., using a causal chain analysis to identify the envisaged effects and possible co-benefits
- 2. Identify and quantify emission reductions
 - Identify the **emission sources** for emission reduction activities
 - Select a suitable methodology or define an applicable estimation approach
 - Define clear baseline and project scenario
- 3. Prepare a **monitoring plan** incl. monitoring and reporting processes



Sources for further guidance

For more information (guidance, fictional examples and webinars) on estimating mitigation effects in the Energy, AFOLU, Mobility and Buildings sector see, e.g., <u>Information on "IKI Standard</u> <u>Indicator 1 – Mitigation"</u>

Source: Information on "IKI Standard Indicator 1 – Mitigation"

Thank you for your attention!

